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Abstract 

This paper proposes a new expert system tool in order to diagnose with a great accuracy and speed the existence 

of faults – failures in an agricultural tractor mechanical gearbox. In addition, the system is able to diagnose 

which of the bearings is not operational so that the repair becomes selective and the maintenance cost-effective. 

The research showed that such problems could be dealt with using Neural Networks. The Bayesian Multilayer 

Perceptron Neural Network with Automatic Relevance Determination (MLP-ARD) makes a good approach. 

Time and frequency-domain vibration signals of normal and faulty bearings are processed for feature extraction. 

These features from all the signals are used as input to the MLP-ARD. The experimental results show that the 

proposed approach is highly accurate regarding different bearing fault detection. This approach will be extended 

with regards to real-time fault detection of rotating parts in agricultural vehicles where the anticipation of detec-

tion of incipient failure can lead to reduced downtime. 

 

Key words: condition monitoring, expert system, bearings, reliability, MLP-ARD neural network. 

 

INTRODUCTION 

In our days, agricultural tractors are the most im-

portant part of agricultural machinery. Without them 

agricultural operations such as plowing, planting and 

harvesting would not be feasible. Hence, agricultural 

tractors should be maintained correctly in order to 

ensure that they work effectively for a long period 

without any serious breakdown. A tractor that breaks 

down and must be prematurely maintained incurs 

large expenses. 

The gearbox is one of the most important components 

of an agricultural tractors mechanical transmission 

system. Its function is to transfer power of revolution 

from one shaft to another. Therefore, the gearbox fault 

diagnosis is crucial to prevent the mechanical system 

from malfunctioning that could cause serious damages 

or the entire system to halt, even personnel casualties 

(LOUTRIDIS, 2008). So, it is very important to detect 

and diagnose early faults that may arise in such gear-

boxes. 

The gearbox has a significant number of moving com-

ponents (axles, gears and bearings). These compo-

nents give rise to vibration. Every component has  

a unique – specific vibration signature related to the 

construction and the operating condition of it. If the 

operating condition of the component changes, the 

vibration signature will also change. This change in 

combination with acoustic emission can be used to 

detect faults before they become critical. 

Bearing as one of the basic gearbox components, 

plays an important role in many transmission systems. 

Early fault diagnosis of bearing may prevent unneces-

sary failures of most of the rotating machinery system 

and thereby increase operational reliability and availa-

bility of the machine. It is well known that when  

a fault appears at a single gearbox bearing, all bear-

ings are replaced even though most of them are still 

operational. This happens because it is impossible for 

the technician to diagnose exactly which bearing is 

faulty. As a result, every bearing of the gearbox is 

replaced, increasing the total repair costs. 

In the last decades, many researchers have developed 

different fault diagnosis methods. One of the principal 

tools for diagnosing bearing faults is the vibration-

based analysis (HENG AND NOR, 1998; RANDALL ET 

AL., 2001; STACK ET AL., 2006; DU AND YANG, 2006). 

Using signal processing techniques in vibration sig-

nals, it is possible to obtain vital diagnostic infor-

mation (LEI ET AL., 2008). Fault signal detection and 

recognition are often accomplished by pattern recogni-

tion using a neural network (BROTHERTON AND 

POLLARD, 1992; YANG ET AL., 2002), RBF network 

(LEONARD AND KRAMER, 1991), Gaussian mixture 

model network (CHOW ET AL., 1993; HECK AND CHOU, 
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1994), fuzzy logic network (CHOW ET AL., 1993), 

Bayesian classifier (MEYER AND TUTHILL, 1995), 

vector correlation or vector distance measure (BAUGH, 

1993). Commonly used feature generation methods 

including the short-time Fourier transform (STFT) 

(BROTHERTON AND POLLARD, 1992), wavelet time-

scale decomposition (BROTHERTON AND POLLARD, 

1992; CHOE ET AL., 1995; PENG ET AL., 2001), cumu-

lant spectrum (BAUGH, 1993), etc. 

The aim of this paper is to present an expert system 

tool which gives a solution to the above problem. The 

system can diagnose with great accuracy and speed 

the existence of faults – failures. In addition, the sys-

tem is able to diagnose which of the bearings is not 

operational so the repair becomes selective and the 

maintenance cost-effective. The originality of the 

developed system focuses on the accurate determina-

tion of the faulty bearing that needs to be replaced. 

The absence of large scale data to be used for training 

and verification of the system's effectiveness, led to 

the design and the construction of an experimental 

device in order to take the measurements required. 

Research showed that such problems could be dealt 

with effectively using Neural Networks. The Bayesian 

Multilayer Perceptron Neural Network with Automat-

ic Relevance Determination (MLP-ARD) is a very 

good approach. The developing system is based on the 

performance of two Bayesian multilayer neural net-

works with automatic relevance determination (Multi-

layer Perceptron Neural Network with Automatic 

Relevance Determination, MLP-ARD) that combine 

data from mono-axial and tri-axial accelerometers 

positioned at selected locations on the gearbox. 

 

MATERIALS AND METHODS 

Work area and soil 

In order to develop and validate the expert system  

an experimental test rig was used. This test rig was 

designed and constructed entirely at the Department of 

Biosystems Engineering, Technological Educational 

Institute of Thessaly, Greece (Fig. 1). 

The test rig consists of a 6-speed manual transmission 

gearbox (5 forward and 1 reverse) with 4 bearings 

(Fig. 4), a three phase AC motor (5,5 Hp), a hydraulic 

dynamometer for gearbox loading and a complete 

vibration recording system of Brüel & Kjær company 

(Fig. 2). In order to collect the vibration data, which is 

used as input to the expert system, two types of accel-

erometers (2 tri-axial and 4 mono-axial) were placed 

at selected locations on the gearbox. Specifically, as 

shown in Fig. 3, 5 and 6 of the tri-axial accelerometers 

were placed on the gearbox at the front and at the rear 

vertical axis and the mono-axial accelerometers were 

placed on the gearbox at the front and the rear hori-

zontal axis. 

 

  
Fig. 1. – (a) Gearbox test rig, (b) Data acquisition 

system, (c) Bearing fault (inner race) 

Fig. 2. – Vibration recording system 
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Fig. 3. – Locations where the accelerometers were 

placed on the gearbox. 

Fig. 4. – Gearbox cut section -  four bearings loca-

tions (No 1 to 4). 

 

 
Fig. 5. – Locations where the mono-axial accelerometers were placed on the gearbox 

 

 
Fig. 6. – Locations where the tri-axial accelerometers were placed on the gearbox 

 

Feature extraction 

The first and maybe the most important step in any 

fault diagnosis problem, is the feature extraction from 

the raw signal. The aim of this is to reflect the general 

changes of the machine operation conditions. Howev-

er, though some features are closely related to the 

fault, others are not. In this paper, twenty-four (24) 

features parameters, twelve (12) time-domain (T1-T12) 

and twelve (12) frequency-domain (F1-F12) were se-

lected. 

Time-domain features 

The first eleven features were introduced by LEI ET. 

AL (2008). These were Mean value (T1), Standard 

deviation (T2), (T3), Root mean square (T4), Peak (T5), 

Skewness (T6), Kurtosis (T7), Crest factor (T8), Clear-

ance factor (T9), Shape indicator (T10) and Impulse 

Indicator (T11). The twelfth one was introduced by 

MOSHOU ET AL. (2010) and regards the linear integral 

of the acceleration signal (Line integral, T12). All the 

used features provide statistical information about the 

nature of data, and were found to be reasonably good 

features for bearing fault detection. These features are 

presented in Tab. 1. 

The new feature (Line Integral) is based on the obser-

vation that the higher frequencies are presented in  

a signal, the higher density of the signal is. The signal 

path due to its direct correlation to the signal variation 

affected by this. This parameter is sufficient to give  

an accurate indication of changing frequency content 

reflecting the total length of the signal. For high sam-

pling rates the approximation can be simplified. 
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Tab. 1. – Time-domain feature parameters 
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Where: x(n) for the time-domain feature is a signal series for n=1,2,….,N, N is the number of data points. Espe-

cially for the line integral N is the number of sample points (equal to 500) in the non-overlapping windows used to 

calculate Kurtosis (T7), the other features and the line integral feature, Ts is the sampling period. 

 

Tab. 2. – Frequency-domain feature parameters 
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Where: (k) is a spectrum for k=1,2,…,K, K is the number of spectrum lines, fk is the frequency value of the kth spectrum 

line. 
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Frequency-domain features 

Frequency-domain is another description of a signal. 

This type of description includes some information 

that cannot be found in time-domain. In this study 

another twelve features (LEI ET AL., 2008) were used 

in order to feed the MLP-ARD with additional infor-

mation with respect to the time domain features. The-

se twelve features were based on the Fourier transform 

of the vibration signals. Feature F1 may indicate the 

vibration energy in the frequency-domain. Features 

F2-F4, F6 and F10-F12 may describe the convergence of 

the spectrum power. Finally, F5 and F7-F9 give infor-

mation about the position change of main frequencies. 

These features are presented in Tab. 2. 

Structure of the system 

In this paragraph the structure of the system is ana-

lyzed. The diagnosis system was based on three Multi-

layer Perceptron with Bayesian Automatic Relevance 

(MLP-ARD) with a 10 neurons hidden layer each. The 

number of neurons at the input level was equal to the 

number of selected features. 

The first stage includes the data acquisition. At the 

second stage, from the recording signal the system 

export two new time signals 1s and 10s. Then, these 

signals segregate to smaller sections containing  

500 values each. For each subdivision (500 values) of 

the 1s or 10s signal exported 12 features in the time 

domain and the 12 features in the frequency domain. 

These 24 features feed the first MLP-ARD (1
st
 level) 

which have three outputs (healthy condition (no fault) 

– fault at the front side of the gearbox (No.1 or No.2) 

– fault at the rear side of the gearbox (No. 3 or No. 4). 

After this the system was trained in all situations 

(healthy condition and bearing faults) and for 5Nm 

load at the output gearbox shaft, in two different gear-

box speeds (1st and 5th speed) and in three different 

rpm (730-1370-2700rpm) at the input gearbox shaft.  

After, follows the 2
nd

 level. This level consists of two 

MLP-ARD which have two outputs each. (1
st
 MLP-

ARD – Fault to bearing No. 1 or No.2 and 2
nd

 MLP-

ARD – Fault to bearing No. 3 or No.4). 

 
Fig. 7. – Expert system flow chart 
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After fault bearing assembly at the gearbox, a new 

vibration signature was carried out in two different 

gearbox speeds (1st and 5th speed), three different 

loads (0, 5, 10Νm) at the output gearbox shaft and 

three different rpm (730-1370-2700rpm) at the input 

gearbox shaft. The recorded vibration signals were 

used for feature extraction. These features are descrip-

tive or high-order statistical data, which were extract-

ed from the vibration signals in time and frequency 

domain. 

The combination of results from both levels gives the 

exact defective bearing. The code of the expert system 

was written in Matlab. In the next Fig. (Fig. 7) the 

expert system flow chart is presented. 

 

RESULTS AND DISCUSSION 

In order to confirm the systems efficiency, it was 

trained under the following operation conditions, load 

5 Nm at the outlet gearbox shaft, 1
st
 and 5

th
 gearbox 

speed and 1370rpm at the inlet gearbox shaft. After 

the training the system tested under different operation 

conditions - case scenarios (three different loads 0, 5 

and 10 Nm at the outlet gearbox shaft, two gearbox 

speeds (1
st
 and 5

th
) and three different rpm (730 – 

1370 – 2700rpm) at the inlet gearbox shaft). The aim 

of these case scenarios is to investigate system effi-

ciency in different operational conditions. 

Specifically, as shown in Tab. 3, in the case scenario 

with a small rpm (760rpm) at the gearbox input shaft 

the system has very good efficiency with little to no 

fault in the gearbox (98.7-100%) and a fault at the rear 

part of it (83.2-100%). But when there was a fault at 

the front part of the gearbox, the system efficiency 

was significantly reduced (3.1-46.6%). In the second 

level, in order to diagnose if the fault is at the upper or 

at the lower bearing the 2
nd

 and the 3
rd

 MLP-ARD 

were executed. In this situation the diagnostic levels 

are particularly high (91.8-100%). 

 

Tab. 3. – Evaluation of the efficiency of diagnostic system with training in 5 Nm load at the output gearbox 

shaft, 1
st 

gearbox speed and 730rpm at the input gearbox shaft 

 
(Training) 1

st
 speed at the gearbox 

1370rpm input shaft - 187rpm output shaft 

(Time period 1sec- 131 values) 

(Training) 1
st
 speed at the gearbox 

1370rpm input shaft - 187rpm output shaft 

(Time period 10sec- 1310 values) 

 (Scenario) 1
st
 speed at the gearbox 730rpm input shaft - 99rpm outputshaft 

 1
st 

MLP-ARD execution 1
st 

MLP-ARD execution 

(Νm) 

Bearing 

without 

fault 

(%) 

Damage at the 

front side of 

the gearbox 

(%) 

Damage at the 

rear side of the 

gearbox 

(%) 

Bearing 

without 

fault 

(%) 

Damage at the 

front side of 

the gearbox 

(%) 

Damage at the 

rear side of the 

gearbox  

(%) 

0 100 3.1 83.2 98.7 20.6 100 

5 100 17.6 100 100 46.6 100 

10 100 17.6 100 99.9 42.7 99.7 

  
2nd MLP-ARD 

execution 

3rdMLP-ARD 

execution  
2nd MLP-ARD 

execution 

3rd MLP-ARD 

execution 

  

Fault 

to 

bearing 

Νο.1 

Fault 

to 

bearing 

Νο.2 

Fault 

to 

bearing 

Νο.3 

Fault 

to 

bearing 

Νο.4 

 

Fault 

to 

bearing 

Νο.1 

Fault 

to 

bearing 

Νο.2 

Fault 

to 

bearing 

Νο.3 

Fault 

 to bear-

ing Νο.4 

  100 98.5 100 100  100 91.8 100 100 

  100 100 100 100  100 100 100 100 

  100 100 100 100  100 100 100 100 

 

In the case study of 1370rpm at the gearbox input 

shaft the results are very high (>85.6%) for all the 

cases. This happens, because the system has been 

trained in these operation conditions. But in the case 

study of 2700rpm the efficiency is low only when 

there is a fault at the at the rear part of the gearbox and 

for 1s signal (38.9-52.7%). This confirms previous 

suspicions about lack of reliability using small signals 

(1s) as input to the expert system. 
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Tab. 4. – Evaluation of theefficiency of diagnostic system with training in load 5Nm at the output gearbox shaft, 

1
st 

gearbox speed and 1370rpm at the input gearbox shaft 

 

(Training) 1
st
 speed at the gearbox 

1370rpm input shaft - 187rpm output shaft 

(Time period 1sec- 131 values) 

(Training) 1
st
 speed at the gearbox 

1370rpm input shaft - 187rpm output shaft 

(Time period 10sec- 1310 values) 

 (Scenario) 1
st
 speed at the gearbox 1370rpm input shaft - 187rpm output shaft 

 1
st 

MLP-ARD execution 1
st 

MLP-ARD execution 

(Νm) 

Bearing 

without 

fault 

 (%) 

Damage at the 

front side of 

the gearbox 

(%) 

Damage at the 

rear side of the 

gearbox 

 (%) 

Bearing 

without 

fault 

(%) 

Damage at the 

front side of 

the gearbox 

(%) 

Damage at the 

rear side of the 

gearbox 

 (%) 

0 100 90.8 100 100 85.6 100 

5 100 100 100 100 100 100 

10 100 100 100 100 100 100 

  
2nd MLP-ARD 

execution 

3rdMLP-ARD 

execution  
2nd MLP-ARD 

execution 

3rd MLP-ARD 

execution 

  

Fault 

to 

bearing 

Νο.1 

Fault 

to 

bearing 

Νο.2 

Fault 

to 

bearing 

Νο.3 

Fault 

to 

bearing 

Νο.4 

 

Fault 

to 

bearing 

Νο.1 

Fault 

to 

bearing 

Νο.2 

Fault 

to 

bearing 

Νο.3 

Fault  

to  

bearing 

Νο.4 

  100 100 100 100  100 100 100 100 

  100 100 100 100  100 100 100 100 

  100 100 100 100  100 100 100 100 

 

Tab. 5. – Evaluation of theefficiency of diagnostic system after training with a 5 Nm load at the output gearbox 

shaft, 1
st 

gearbox speed and 2700rpm at the input gearbox shaft 

 
(Training) 1

st
 speed at the gearbox 

1370rpm input shaft - 187rpm output shaft 

(Time period 1sec- 131 values) 

(Training) 1
st
 speed at the gearbox 

1370rpm input shaft - 187rpm output shaft 

(Time period 10sec- 1310 values) 

 (Scenario) 1
st
 speed at the gearbox 2700rpm input shaft - 380rpm output shaft 

 1
st 

MLP-ARD execution 1
st 

MLP-ARD execution 

(Νm) 

Bearing 

without 

fault 

(%) 

Damage at the 

front side of 

the gearbox 

(%) 

Damage at the 

rear side of the 

gearbox 

 (%) 

Bearing 

without 

fault 

 (%) 

Damage at the 

front side of 

the gearbox 

(%) 

Damage at the 

rear side of the 

gearbox 

 (%) 

0 100 100 38.9 97.4 94.1 93.1 

5 100 100 48.1 60.2 99.8 83.3 

10 100 100 52.7 45.9 95.3 94.1 

  
2nd MLP-ARD 

execution 

3rdMLP-ARD 

execution  
2nd MLP-ARD 

execution 

3rd MLP-ARD 

execution 

  

Fault 

to 

bearing 

Νο.1 

Fault 

to 

bearing 

Νο.2 

Fault 

to 

bearing 

Νο.3 

Fault 

to 

bearing 

Νο.4 

 

Fault 

to 

bearing 

Νο.1 

Fault 

to 

bearing 

Νο.2 

Fault 

to 

bearing 

Νο.3 

Fault  

to  

bearing 

Νο.4 

  100 100 100 80.9  100 100 100 100 

  94.7 100 100 6.1  91.7 100 100 100 

  97.7 100 100 3.8  97.7 100 100 100 

 

In the case where the 5
th

 gearbox speed was selected 

the problem that occurs at low speed at the input shaft 

continues for diagnosis at the front side of the gearbox 

which means that the systems weakness is not affected 

by the selected gearbox speed.  This hypothesis is 

confirmed by the recorded results after the other gear-
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box speeds selection where the phenomenon contin-

ues. Αs shown in Tab. 6, in the scenario with a small 

rpm (760rpm) at the gearbox input shaft the system 

has excellent efficiency in all cases, there is no fault in 

the gearbox (100%) and a fault at the rear part of the 

gearbox (100%). But when there is a fault at the front 

part of the gearbox, the system efficiency was signifi-

cantly reduced (3.8-84.7%). In the second level, in 

order to diagnose whether the damage is at the upper 

or at the lower bearing the 2
nd

 and the 3
rd

 MLP-ARD 

were executed. In this case the diagnostic efficiency is 

extremely high close to 100%. 

 

Tab. 6. – Evaluation of the efficiency of diagnostic system after training with a 5 Nm load at the output gearbox 

shaft, 5
th 

gearbox speed and 730rpm at the input gearbox shaft 

 
(Training) 5

th
 speed at the gearbox 

1370rpm input shaft - 1370rpm output shaft 

(Time period 1sec- 131 values) 

(Training) 5
th

 speed at the gearbox 

1370rpm input shaft - 1370rpm output shaft 

(Time period 10sec- 1310 values) 

 (Scenario) 5
th

 speed at the gearbox 730rpm input shaft - 730rpm output shaft 

 1
st 

MLP-ARD execution 1
st 

MLP-ARD execution 

(Νm) 

Bearing 

without 

fault 

(%) 

Damage at the 

front side of 

the gearbox 

(%) 

Damage at the 

rear side of the 

gearbox 

 (%) 

Bearing 

without 

fault 

(%) 

Damage at the 

front side of 

the gearbox 

(%) 

Damage at the 

rear side of the 

gearbox 

 (%) 

0 100 3.8 100 100 84.7 100 

5 100 32.1 100 100 48.9 100 

10 100 36.7 100 100 52.7 100 

  
2nd MLP-ARD 

execution 

3rdMLP-ARD 

execution  
2nd MLP-ARD 

execution 

3rd MLP-ARD 

execution 

  

Fault 

to 

bearing 

Νο.1 

Fault 

to 

bearing 

Νο.2 

Fault 

to 

bearing 

Νο.3 

Fault 

to 

bearing 

Νο.4 

 

Fault 

to 

bearing 

Νο.1 

Fault 

to 

bearing 

Νο.2 

Fault 

to 

bearing 

Νο.3 

Fault 

to 

 bearing 

Νο.4 

  100 100 100 100  100 100 100 100 

  100 100 100 100  100 100 100 100 

  100 100 100 100  100 100 100 100 

 

In the case study of 1370rpm at the gearbox input 

shaft the results are very high for all the cases (99.2-

100%). This occurs, because the system has been 

trained in these operation conditions. But in the case 

study of 2700rpm the efficiency is low only when 

there is a fault at the at the rear part of the gearbox and 

for 1s signal (60.3-100%). This confirms previous 

suspicions concerning the low reliability of the use of 

such a small signal as input to the expert system. In 

the second level, in order to diagnose whether the 

damage is at the upper or at the lower bearing the 2th 

and the 3
rd

 MLP-ARD were executed.  In this case the 

diagnostic efficiency is good (64.1-100%). 
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Tab. 7. – Evaluation of theefficiency of diagnostic system after training with a 5 Nm load at the output gearbox 

shaft, 5
th 

gearbox speed and 1370rpm at the input gearbox shaft 

 
(Training) 5

th
 speed at the gearbox 

1370rpm input shaft - 1370rpm output shaft 

(Time period 1sec- 131 values) 

(Training) 5
th

 speed at the gearbox 

1370rpm input shaft - 1370rpm output shaft 

(Time period 10sec- 1310 values) 

 (Scenario) 5
th

 speed at the gearbox 1370rpm input shaft -1370rpm output shaft 

 1
st 

MLP-ARD execution 1
st 

MLP-ARD execution 

(Νm) 

Bearing 

without 

fault 

(%) 

Damage at the 

front side of 

the gearbox 

(%) 

Damage at the 

rear side of the 

gearbox  

(%) 

Bearing 

without 

fault 

(%) 

Damage at the 

front side of 

the gearbox 

(%) 

Damage at the rear 

side of the gearbox 

 (%) 

0 100 100 100 100 100 100 

5 100 100 100 100 100 100 

10 100 100 100 100 100 100 

  
2nd MLP-ARD 

execution 

3rdMLP-ARD 

execution  
2nd MLP-ARD 

execution 

3rd MLP-ARD 

execution 

  

Fault 

to 

bearing 

Νο.1 

Fault 

to 

bearing 

Νο.2 

Fault 

to 

bearing 

Νο.3 

Fault 

to 

bearing 

Νο.4 

 

Fault 

to 

bearing 

Νο.1 

Fault 

to 

bearing 

Νο.2 

Fault 

to 

bearing 

Νο.3 

Fault 

 to  

bearing 

 Νο.4 

  99.2 100 100 100  100 100 100 100 

  100 100 100 100  100 100 100 100 

  100 100 100 100  100 100 100 100 

 

Tab. 8. – Evaluation of theefficiency of diagnostic system after training with a 5 Nm load at the output gearbox 

shaft, 5
th 

gearbox speed and 2700rpm at the input gearbox shaft 

 
(Training) 5

th
 speed at the gearbox 

1370rpm input shaft - 1370rpm output shaft 

(Time period 1sec- 131 values) 

(Training) 5
th

 speed at the gearbox 

1370rpm input shaft - 1370rpm output shaft 

(Time period 10sec- 1310 values) 

 (Scenario) 5
th

 speed at the gearbox 2700rpm input shaft -2700rpm output shaft 

 1
st 

MLP-ARD execution 1
st 

MLP-ARD execution 

(Νm) 

Bearing 

without 

fault 

(%) 

Damage at the 

front side of 

the gearbox 

(%) 

Damage at the 

rear side of the 

gearbox 

 (%) 

Bearing 

without 

fault 

 (%) 

Damage at the 

front side of 

the gearbox 

(%) 

Damage at the 

rear side of the 

gearbox  

(%) 

0 100 100 60.3 100 100 100 

5 100 100 74.8 100 100 100 

10 100 100 60.3 100 100 100 

  
2nd MLP-ARD 

execution 

3rdMLP-ARD 

execution  
2nd MLP-ARD 

execution 

3rd MLP-ARD 

execution 

  

Fault 

to 

bearing 

Νο.1 

Fault 

to 

bearing 

Νο.2 

Fault 

to 

bearing 

Νο.3 

Fault 

to 

bearing 

Νο.4 

 

Fault 

to 

bearing 

Νο.1 

Fault 

to 

bearing 

Νο.2 

Fault 

to 

bearing 

Νο.3 

Fault 

 to  

bearing 

Νο.4 

  94.7 99.7 99.2 100  100 100 100 100 

  64.1 100 100 100  100 100 100 100 

  72.5 100 100 100  100 100 100 100 
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CONCLUSIONS 

It is evident that the neural network MLP-ARD can 

provide reliable results using as inputs features in time 

domain and in frequency domain. These features were 

extracted from vibration signals with different time 

lengths (1s and 10s). These features (according to their 

nature) can be used with success for fault diagnosis of 

rolling and roller bearings. The combination of the 

futures with the appropriate neural network gives us  

a powerful tool for bearing condition monitoring and 

early fault diagnosis in mechanical gearboxes. Fur-

thermore, the features can identify with sufficient 

precision the point in which the fault occurs. It has 

been observed that a small signal (1s) provides  

a smaller diagnostic efficiency compared to a larger 

one (10s). Also, when the system is verified in train-

ing operational conditions then it gives better results 

relative to all other combinations training - verifica-

tion. The system has a strong ability to be trained in  

a specific load at the output gearbox shaft. In future 

work the expert system effectiveness will be investi-

gated using more data from different types of faults in 

rolling bearings of the gearbox in order to confirm 

further the system reliability. 
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